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Plane simple shear tests were performed on polycarbonate specimens with a miniaturized shearing machine 
installed on the stage of a scanning electron microscope. The in situ observations show the nucleation and 
growth (longitudinal and transverse) of a unique shear band. From measurements of the band length, of 
the band width and of the local shear during the course of the test, the kinetics of this plastic instability 
were specially analysed. 

In addition, a computer simulation of band propagation was achieved. It is based on (i) the intrinsic 
constitutive equation of the material and (ii) the two-dimensional internal stress field generated by the 
shear gradient. The simulat)on takes into account correctly the different stages of the test including the 
formation and the propagation of the band. In particular, it appears that the lateral widening of the band 
is controlled by internal stresses which were initiated on the band fronts during the longitudinal propagation 
phase. 
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INTRODUCTION 

After a number of experimental pieces of evidence 
published in the literature, it is now widely acknowledged 
that glassy polymers exhibit plastic deformation below 
T~ (glass transition temperature) mainly through the 
activation of shear bands. Among other polymers, 
bisphenol-A polycarbonate (PC) revealed itself as a very 
interesting polymer for the study of the shear-banding 
mechanism due to its remarkable toughness favoured by 
low-temperature relaxation capabilities 1. Because of this 
particular feature, PC deforms plastically without critical 
crazing over a large range of temperature below Tg and 
under various types of loading: tension 2, compression 3 
and simple shear 4'5. 

Most observations were reported from uniaxial tension 
and compression experiments, where the bands developed 
obliquely to the loading axis. They were generally 
initiated in stress-concentration zones (scratches, notches, 
etc.) and then propagated into the bulk, while the 
recorded stress-strain curve displayed a marked yield 
drop. In these tests, the bands multiply along two or 
more shearing directions, according to the geometry of 
the specimens and the boundary conditions 6. In most 
experiments the development of the bands was difficult 
to analyse quantitatively because of its great instability 
under the effect of the elastic energy stored during the 
loading sequence and because of the interactions between 
bands propagating along different shear directions 7. 

In this effort towards a closer understanding of the 
plastic banding mechanisms, simple shear experiments 
are of outstanding interest since they favour a unique 
shear plane and thus avoid the problem of band crossing. 
By means of torsion tests, it was shown 5 that isolated 
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shear bands could be initiated and grown at will in PC 
cylindrical test-pieces and even reverted back to zero 
strain by application of a negative torque. However, 
because the torque vs. twist curves could not be simply 
resolved in terms of shear stress vs. shear strain behaviour 8, 
the interpretation of the tests remained at a qualitative 
level. More recently, it was found in this laboratory 9 that 
the plane simple shear test was more favourable for the 
study of shear-banding kinetics since, like torsion, it 
allows the initiation of a unique shear band in the sample 
and, furthermore, it is better adapted to the determination 
of shear stress and shear strain inside the growing band. 

The aim of the present work was twofold: (i) first, to 
illustrate the capabilities of the latter experimental 
technique by correlating the main steps of shear-band 
propagation with the intrinsic constitutive behaviour of 
polycarbonate; and (ii) secondly, to describe in some 
detail the driving forces that promote the longitudinal 
and transverse propagation of a shear band, in terms of 
micromechanical and macromolecular mechanisms. This 
analysis will provide the ingredients of a finite-difference 
computation for the modelling of the entire banding 
process on the basis of the shear stress vs. shear strain 
behaviour of the polymer. 

EXPERIMENTAL INVESTIGATION 

Specimens 

Shear specimens were machined out of the same plates 
of Makrolon polycarbonate as in previous studies 4,1°. 
This amorphous thermoplastic polymer was characterized 
by its average molecular weight -Mw = 28 800 g mol-  1, its 
polydispersity ~rw/~n= 1.85 and its glass transition 
temperature Ts= 145°C. The shape of the samples is 
indicated in Figure I. The dimensions of the calibrated 
part are:length L = 60 mm, width h = 4 mm and thickness 
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Figure 1 Polycarbonate samples used for the shear tests with: (a) a 
centrally printed marker; (b) an array of engraved parallel markers 

r=F/Le) during such a simple shear test. Several 
deformation stages are observed, which correspond to 
different distortion modes of the marker (Figure 2b). 

Stage I. Homogeneous viscoelastic response ending at 
the upper yield stress. The marker remains straight and 
simply rotates as stress increases. 

Stage II. Shear stress drop associated with the 
initiation of plastic deformation. This concentrates in a 
narrow portion of the specimen width, as assessed by the 
kinking of the ink marker (it will be proved later that 
this effect corresponds to the formation of a shear band). 

Stage III. Quasi-linear plateau up to 7=0.8. During 
this stage, the marker kink (plastic band) propagates 
laterally to both sides of the calibrated part. 

e - 3  mm or 1 mm. The massive heads on both sides are 
designed to be gripped in the jaws of the shearing stage. 

Two types of markers were used to monitor the local 
shear in the course of the tests. In the first type (Figure 
la), the fiat surface of the specimen was simply marked, 
in its central part, with a straight line printed with a 
strongly adherent and flexible ink. This marking system 
was used for the determination of the constitutive 
behaviour of the material. In the second type (Figure Ib), 
a fine array of parallel lines was lightly engraved on the 
polished specimen by means of a razor blade adapted on 
the arm of a computerized plotter. The spacing of the 
lines was equal to 0.1 mm. This array served to follow 
the distribution of shear strain throughout the whole 
calibrated area. In both cases, the current value of the 
local shear was determined through the relation Yloe ~--" 

tan 0lot, where 0]oc represents the local rotation of a 
marker originally perpendicular to the shear direction 
Ox. By contrast, the applied shear 7 was defined as the 
average value of the local shear over the whole width of 
the sample (it corresponds to the relative shear displace- 
ment of the gripped heads divided by the width h). 

Moreover, for all specimens, a very small geometric 
defect was made centrally on the rear face of the 
calibrated portion by scraping the polymer gently with 
a round-tipped cutting tool. This operation resulted in 
reducing the thickness by about 1% in a small area. It 
was designed to fix the initiation locus of the eventual 
shear band. 

Before the tests, the samples were carefully annealed 
in a dry oven at 110°C for 48 h in order to make them 
free of moisture and internal stresses. They were slowly 
cooled down to ambient temperature and then kept in 
a desiccator. 

Apparent stress-strain behaviour in simple shear 
Polycarbonate samples of the first type were mounted 

in a shear stage installed in a universal MTS testing 
machine and subjected to a constant applied shear rate 
~ = 5 x 1 0 - 4 s  -1 at room temperature (25+1°C). The 
shear rate was slow enough to ensure isothermal defor- 
mation. During the course of the test, the evolution of 
the single ink marker was followed in situ by means of 
a video camera interfaced with a microcomputer, as 
described in more detail in another paper 11. 

The curve in Figure 2a displays the evolution of the 
applied shear stress (shear force per unit cross section, 

Stage IV. Generalized plastic flow of the sample with 
enhanced hardening. This homogeneous deformation 
regime begins as soon as the propagation of the plastic 
zone has reached the edges of the calibrated part. The 
marker has recovered its straight shape and continues 
rotating until rupture of the specimen occurs. 

Two-dimensional shear-band development 
In addition to the above experiments, special tests were 

performed with a miniaturized shearing machine (Figure 
3), which was specially designed to observe the detailed 
two-dimensional geometry of the shear band under load. 
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Figure 2 Apparent behaviour of polycarbonate in simple shear: (a) 
applied stress-applied shear curve; (b) evolution of the surface marker 
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Figure 3 Schematic diagram of the miniaturized shearing machine: 
(a) front view; (b) end view 

The dimensions (135 x 122mm 2) and the weight (3kg) 
were small enough for the machine to be installed on the 
stage of a scanning electron microscope. It is made of a 
rigid frame (A) and a mobile part (B) guided by a linear 
ball slider and actuated by a screw (SC). The displace- 
ment is monitored by means of a transducer (DT). The 
specimen heads are firmly attached to parts A and B, 
respectively, and deformed step by step to increasing 
values of the applied shear up to Ymax = 1.4. At each step, 
the sample (S) was examined microscopically while the 
shear was held constant. 

Figure 4 illustrates the successive stages of the propa- 
gation of a shear band in a specimen of the second type, 
engraved with an array of fine parallel lines. The lines 
were originally oriented along the Oy direction. Their 
distortion gives access to the two-dimensional distribution 
of the local shear 7~o~ at each step of the sample 
deformation. It should be noted now that the local shear 
determined by this method under stress includes both 
the viscoelastic and the plastic components of strain. 

The microscopic observations displayed in Figure 4 
dearly concur with the different stages of the apparent 
strain-stress curve of Figure 2a. 

Stage I. For an applied shear lower than the yield 
strain, the array deformed homogeneously by viscoelastic 
mechanisms (Figure 4b at 7=0.05). This deformation 
could be recovered by unloading the sample. 

Stage II. As the shear stress passes its maximum, a 
single band appeared at the location of the thickness 
defect. The micrograph in Figure 4c was obtained while 
the applied shear was equal to 0.095. The presence of a 
shear band parallel to Ox is assessed by the occurrence 
of sharp kinks on the engraved lines. The band appears 
more clearly if the micrograph is viewed parallel to the 
lines and holding the plane of the figure at eye level. It 
is evident that the width of the band is of the order of 
0.1 mm and that it does not occupy the whole length of 
the specimen (the enlarged view in Figure 5 demonstrates 
that the region selected contains the lower tip of the shear 
band). The distortion of the array of lines was analysed 
quantitatively in terms of the local shear 71oe. Curve b in 
Figure 6 shows that 71o~ drops rather abruptly at the band 
tip: over a length of 2 mm, the local shear decreases from 
a value of about 0.75 (in the band) down to the 
viscoelastic shear lower than 0.1 (ahead of the band). 
While the shear decreased during stage II, the parameters 

of the growing band were slightly modified: (i) the 
transition zone at the tips of the band was spread (curve c, 
Figure 6), (ii) the local shear inside the band increased 
somewhat and (iii) the width of the band began to grow 
(see curves a and b, Figure 7). 

Stage III. The plateau stage was essentially character- 
ized by the gradual widening of the band (Figures 4d and 
4e). It began when the band had reached the ends of the 
specimen, while the stress passed through a minimum, 
at 7 - 0.2. From the quantitative measurements (Figure 8) 
it is clear that the width of the band increases linearly 
with the applied shear. However, as shown in Figure 7, 
the widening was not necessarily symmetrical and could 
be influenced by a very slight non-uniformity in the 
specimen thickness. It should also be remarked that the 
local shear inside the band continued to increase at a 
very slow rate during band widening. Finally, stage III 
ended when the band occupied the whole calibrated part 
of the sample, at an applied shear y -  0.9. 

Stage IV. This last stage is characterized by the 
homogeneous plastic deformation of the specimen, the 
applied shear ~ being equal to the local shear ?~oc at any 
point of the sample. 

Determination of the intrinsic constitutive equation 
of polycarbonate 

The apparent stress-strain behaviour displayed in 
Figure 2a represents the mean response of the overall 
specimen and not the true intrinsic behaviour of a 
microscopic material element. In order to determine the 
latter, the above behaviour was reconsidered in terms of 
the variations of the shear stress z versus the local shear 
Y~oc. The computer records of the marker shape were 
analysed at a number of steps during the shear test, and 
the local shear was measured from the local slope of the 
marker in the centre of the specimen (where the shear 
band was initiated). However, the local stress-strain 
curve thus obtained did not correspond to a constant 
local shear rate. As shown by the Vloc vs. 7 plot of Figure 
8, the local shear rate ~oc was much faster than the applied 
shear rate ~ while the plastic shear localized during stage 
II, and ~1o~ was much slower than ~ when the band 
propagated laterally during stage III. The two rates 
match only during the homogeneous stages I and IV. In 
order to correct the shear stress for these shear-rate 
fluctuations, the following expression was used: 

"l~(~ref) = T(~)loc)(~ref/~loc) m (1) 

where ~ref is a fixed reference value of the local shear 
rate while the strain-rate sensitivity coefficient m= 
(~ In z/~ In Ylo~)~oo was found to be equal to about 0.027 
for polycarbonate in a previous work 4. By means of 
the above procedure, the intrinsic (local) stress-strain 
behaviour was derived for a constant reference shear 
(local) rate ~ref = 5 x 10 -4 s- 1 and is displayed in Figure 9. 
It is evident that this curve differs from the apparent 
behaviour in Figure 2a: (i) at the yield drop, whose slope 
is less abrupt, and (ii) in the medium shear range, where 
the stress plateau is no longer observed. Instead, a 
gradually hardening plastic regime is recorded once the 
lower yield stress is passed, in contrast to the stage III- 
stage IV transition observed previously. 

This intrinsic behaviour of glassy polycarbonate corre- 
sponds to specific mechanisms that have been proposed 
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Figure 4 Distortion of the microscopic array of lines on a polycarbonate sample under simple shear: (a) 7 = 0; 
(b) ?=0.05; (c) ?=0.095; (d) ?=0.12; (e) ?=0.26; (f) ?=l  

earlier t l - la .  The stress drop at yield results from an 
avalanche of 'defects' associated with collective confor- 
mational changes of molecules in microscopic domains, 
while the final strain hardening would be due to 
the entropic effect of the gradual orientation of the 
macromolecular chains 14. 

It is now possible to describe the intrinsic plastic 
behaviour of polycarbonate by means of an appropriate 
constitutive equation "~(]/Ioe, ~1o¢) fitted with the above 

data. Following a previous analysis is, we will use here 
the following phenomenological expression 

"C(~IO¢, '~10¢)= V(~'lo¢) Y(~lo¢)H('}'loc)('~loc) m (2) 

In this multiplicative law, the first term describes the 
initial viscoelastic rise: 

V(71oc ) = K[  1 - e x p ( -  W?,oc)] 
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and the final term determines the strain-rate sensitivity. 
The parameters of the constitutive equation were fitted to 
the experiment, leading to the modelled curve displayed 
in Figure 9. 

COMPUTER SIMULATION OF BAND 
PROPAGATION 

After the experimental observations presented in the 
previous section, it appears clearly that the propagation 
of a plastic shear band in polycarbonate is an intrinsic 
and gradual process, in contrast to its initiation which 
depends essentially on the availability of geometric or 
structural defects tr. An important problem is to under- 
stand what are the driving factors that control the 
propagation kinetics. In previous papers 4'17'1s, argu- 
ments have been developed to interpret the longitudinal 
development of a shear band in terms of the internal 
stresses induced in the elastic material ahead of the tip 
of the elongating band. However, the steady-state lateral 
widening of the fully elongated band has not been 
discussed hitherto with the same attention. In a recent 
paper is, one of the authors wondered whether or not the 
widening process of the band would be controlled by 
micromechanical factors or by the lateral diffusion of 
structural defects out of the plastically deformed band. 
The object of this section is to answer this question by 
reporting the results of a numerical simulation taking 
into account solely the micromechanical aspect of the 
problem. This computation was run by means of a simple 
finite-difference method on the basis of two essential 
ingredients: (i) the intrinsic constitutive equation of the 
material and (ii) the two-dimensional internal stress 
distribution generated by the propagating band. 

Basic assumptions of the model 
The calibrated part of the shear specimen was con- 

sidered as a mesh of N =  nx x ny identically parallelo- 
grammic elements of the same thickness (e) as the tested 
sample and whose faces are perpendicular to the Ox and 
Oy directions (Figure 10). Each element was referenced 
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Figure 10 ParaUelogrammic element mesh used for the simulation 
(case of a homogeneous deformation) 
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Figure 11 Induced geometrical misfit between two neighbouring 
elements 

by its integer coordinates (i, j) in the two-dimensional 
array. 

Following the general principle of the finite-difference 
scheme, it was assumed here that the strain was uniform 
within a given element, so that each element (i, j) 
corresponds to specific values of the shear ~i j (with its 
elastic and plastic components, ~i j = ~7~ + ?r.~) 'and of the 
shear rate ~i,j (with ~i.j= 9~i+ ~ ) .  Owing 'to the plane 
geometry of the simple shear test, it was possible as a 
first approximation to take into account only the shear 
component of the strain tensor in view of reducing the 
computing time (second-order strain phenomena, like 
Weissenberg effect, were neglected although it was shown 
previously 9 that they are not completely absent in such 
tests). 

Although the uniformity of the strain in a given element 
does not pose any problem if the general strain distribution 
is itself uniform, a geometrical misfit arises if consecutive 
elements along the shear axis Ox exhibit different 
amounts of shear, ?~,j and 7i+l,j (Fioure 11). The 
amplitude of the displacement misfit is: 

bi,j = (~i + 1 , j -  Ti,j)h/ny 

and should be accommodated by a variation of the strain 
within the two neighbouring elements. In the present 
method, however, this strain variation was not intro- 
duced explicitly but the misfit was taken into account by 
superimposing an internal shear stress zi,t(x, y) onto the 
uniformly applied shear stress z. In the particular 
geometry of the simple shear specimen, the internal stress 
field caused by a shear misfit can be readily evaluated t 1,19 
by considering that the misfit is equivalent to a finite 
edge dislocation parallel to the Oz axis, with a Burgers 
vector b~j along the Ox axis. It is well known 2° that such 
a perturbation induces in the surrounding medium a 
stress field whose shear stress component is given by the 
expression: 

Tint(x, y ) =  ['lb(Xb, Yb) ( X -  X b ) [ ( X -  Xb) 2 -  ( y - - y b )  23 (3) 

2n(1 - v) [(x - -  .X;b) 2 "Jr- (y--  yb)2"] 2 

where # and v are respectively the shear modulus and 
Poisson's ratio of the material, b(Xb, Yb) is the Burgers 
vector at the location (Xb, Yb) of the misfitted pair of 
elements, while x and y are the current coordinates in 
the medium. In this first version of the model, we did 
not take into account the normal components trx~ and 
tr .  of the internal stress field, whose influence on the 

2062 POLYMER, 1990, Vol 31, November 



Shear-band propagation in glassy polycarbonate." J. Grenet and C. G'Sell 

plastic shear regime of polycarbonate was recognized as 
a second-order effect 9. 

In contrast to the longitudinal shear gradients, the 
transverse gradients do not cause any topological misfit 
in the simple shear geometry, nor do they cause any 
specific stresses. This remark justifies the occurrence of 
the sharp shear band whose border marks the limit 
between the plastically deformed material elements 
within the band and the neighbouring elements, which 
have been subjected only to small viscoelastic strains. 

The applied shear stress z and shear ~ were related to 
the elementary (local) stress zi,j and shear ~.j in the 
following way. As concerns strains, the applied shear was 
obtained by averaging the local shear over the whole 
specimen: 

mx n~ 

r = (r,,j> = ~ E ~, e,,~ (4) 
i = 1  j = l  

This formulation is justified by the geometry of the 
specimen, whose massive heads impose a uniform dis- 
placement on the elements lying along the extreme 
longitudinal rows. Concerning the stresses, the shear 
force was assumed to be transmitted uniformly across 
the width of the sample. This assumption has often 
been applied in previous papers 2~. It is allowed by the 
very slow shear rate adopted in these tests, which makes 
the inertia effects negligible. Furthermore, for a sample 
of uniform thickness, the average shear stress along a 
given longitudinal row of elements is equal to the applied 
shear stress. This latter property is specific to the 
symmetry of the specimens considered here, which makes 
the average value of the internal shear stress zero along 
any given longitudinal row of elements. In addition, the 
effect of the geometric defect was taken simply into 
account by an amplification of the local stress by a factor 
e/e~j, where e and el, j a r e  the nominal and defected 
thickness of the sample, respectively. Following the above 
treatment, the elementary (local) stress was computed by 
the relation: 

~i, j=(e~z +zi,~ t (5) 
\ e i , j /  

It is clear that, in longitudinal rows containing defect 
elements, the above expression does not make the average 
stress (T~j> rigorously equal to the applied stress z. 
Nevertheless, it was maintained in this form for the 
present purpose owing to the very small reduction of 
thickness (1%) and the limited area of the defect 
introduced. 

Computin# algorithm 
The logic scheme of the main loop of the simulation 

is summarized in Figure 12. The terms between square 
brackets are referred to each element (i, j) of the mesh. 

At the beginning of the loop, a tentative shear stress 
z is applied to the overall specimen. The shear stress field 
zij is calculated by means of relation (5), which takes 
into account the thickness defect of the sample and the 
internal stress field (equal to zero at the beginning of the 
simulation). Then the plastic strain field ~ is computed 
from the total shear strain field and from the elastic shear 
strain field (Young's modulus and the shear stress field 
being known). By use of the constitutive equation 
(relation (1)), it is possible to determine the plastic 
shear-rate field "p~ 7~.j. At this moment, the time increment 

I change of 
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shear  s t r e s s  

I 

beginning of the main loop I 

, I 
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Figure 12 Logic scheme of the main loop for the simulation 

is automatically computed as the time necessary to reach 
an imposed shear increment ATioc in the fastest element. 
The total shear-rate field can thus be computed by adding 
its plastic and elastic components. 

If the comparison test between the mean calculated 
shear rate and the imposed shear rate of the simulation 
is verified, the program is continued by updating the 
current shear strain field, the Burgers vectors field and 
finally the internal stress field (by summation on overall 
specimen of elementary internal stress following relation 
(3)). In the opposite case (negative comparison test) the 
tentative shear stress is modified and the internal loop is 
followed again. 

Simulation results 
Figure 13 shows a simulated shear stress-shear strain 

behaviour during a simple plane shear test run at 25°C 
with a shear rate ~=5 x lO-4s -1. The four successive 
stages of the experimental curve (Figure 2) are correctly 
taken into account by the simulation: (i) the homogeneous 
viscoelastic response ending at the upper yield stress 
(about 40MPa), (ii) the drop of shear stress corre- 
sponding to the initiation of a shear band and its 
elongation, (iii) the plateau (stage III) with the lateral 
widening of the band and (iv) the homogeneous plastic 
deformation stage, which starts when the plastic zone 
has reached the edges of the calibrated part of the 
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specimen. The corresponding steps of the band propa- 
gation obtained by the computer simulation are displayed 
in Figure 14. The five upper sketches are the calculated 
shapes of an array of parallel lines for different values of 7 
(respectively 0.05, 0.15, 0.20, 0.25 and 0.55--see open 
circles in Figure 13). The first profile (Figure 14a) is 

50 

d 
30 

20 

10 

Figure 13 

SIMULATION 

© 
e 

i i , I 
0.25 0.5 O.75 1 t.25 

A P P L I E D  SHEAR 

Applied stress-strain behaviour in a simulated simple plane 
shear test for 9 = 5 x 10-4 and T = 25°C (open circles indicate the steps 
illustrated in Figure 14) 

obtained during the viscoelastic stage. The two following 
ones (Figures 14b and 14c) show the initiation and the 
elongation of the band, respectively. On Figure 14d, the 
longitudinal propagation of the band is completed and 
finally, for ~ = 0.55, the lateral widening is nearly achieved 
(Figure 14e). For a better view, the band development 
is shown in another representation on the five lower 
sketches, where the region where the local shear is greater 
than 0.4 was shaded in order to outline the shape of the 
shear-band front. The last drawing (Figure 14e, lower) 
is of particular interest. It shows that the profile of the 
band does not correspond, rather surprisingly, to a 
straight front propagation. Despite the overall symmetry 
of the system, it appears that the lateral widening of the 
band proceeds by the activation of localized sheared 
ledges on both its fronts. A similar conclusion has been 
drawn previously in an experimental and theoretical 
investigation on the Liiders band front in mild steels 22. 
In contrast to statements generally accepted in the 
current literature, the authors demonstrated from micro- 
scopic observations and modelled by means of an elastic- 
plastic finite-element calculation that the oblique Liiders 
band, which is nucleated under uniaxial tension in steel, 
grows at the lower yield point by the activation of 
microscopic ledges. They found that the local micro- 
geometry of the front induced an interfacial stress 

a b c d e 

Figure 14 Computer simulation of evolution of shape of markers (upper) and of band propagation (lower): (a) y=0.05; (b) )'=0.15; (c) ),=0.20; 
(d) 7=0.25; (e)),=0.55 
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concentration of the order of 1.5. It  is clear that these 
results reported in steel are in the same vein as those 
described in this paper. However,  in the present work, 
the simpler loading geometry and the non-crystalline 
nature of the materials emphasize the intrinsic micro- 
mechanical aspect of the band propagat ion process. 
Unlike the case of steel, where the size of ledges on the 
band front were found  to be of the same order of 
magnitude as the grain diameter, the irregular shape of 
the front in our modelling has, evidently, no relation to 
any structural features since the material is amorphous.  
It is more likely that the size of the ledges nucleated on 
the band front in the polycarbonate shear specimens is 
related to the overall geometry of the sample, to the size 
of the initial defect and to the constitutive relation of the 
material. A quantitative correlation of these parameters  
would require simulation of the micromechanical process 
by a somewhat finer element array than that adopted in 
the present study. This is the aim of a further development 
of this work, now in progress. 

S U M M A R Y  AND C O N C L U S I O N S  

Plane simple shear tests were performed on polycarbon- 
ate specimens with a miniaturized shearing machine, 
especially designed to be installed on the stage of a 
microscope. By means of precise in s i tu  measurements 
(band length, band width and local shear), it was shown 
that, during a test, considerable shear gradients take place 
at the tip and on the lateral fronts of the shear band. A 
computer  simulation was carried out on the simple 
hypotheses of (i) a constitutive equation and (ii) an 
internal shear stress field generated by the shear gradients. 
This modelling takes into account correctly the nucleation 
and the propagat ion of the shear band and shows that, 
in the plastic response of glassy polymers at large strains, 
the micromechanical effects play a major  role in the 

propagat ion kinetics of localized shear bands, during the 
longitudinal development of the band and in the course 
of its lateral widening as well. 
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